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This paper deals with the first application of the weighted particle method to the 
inhomogeneous semiconductor Boltzmann equation. In this method, the collision term is 
treated in a deterministic way. In a previous paper we reported the application of this method 
to a homogeneous case. This paper gives a detailed analysis of the inhomogeneous case. In 
particular, we investigate three different methods to perform the coupling of the particles 
trajectories with the Poisson equation. Two test problems are considered. The First one is 
“slightly inhomogeneous” and concerns damped plasma oscillations. The second one is 
“strongly” inhomogeneous and consists in the modelling of a one-dimensional NC-N--N+ 
structure, with a sharp doping discontinuity. ‘c 1990 Academic Press. Inc. 

1. INTRODUCTION 

We present numerical simulations of the semiconductor Boltzmann equation, 
using the weighted particle method [ 1,2]. In this paper, one-dimensional 
inhomogeneous semiconductor structures are considered. The coupling of the 
Boltzmann and the Poisson equations is fully taken into account, but on the other 
hand, a simplified relaxation time model is considered for the collision operator. On 
the contrary, in a previous paper [2] (see also [3] for physical results), we 
provided a detailed analysis of the weighted particle method for physically realistic 
collision operators (e.g., polar optical and intervalley collision operators), but for 
a homogeneous structure in which the Poisson and the Boltzmann equations are 
decoupled. On the basis of these two investigations, a physically realistic numerical 
code for one-dimensional semiconductor structures will be developed soon. 

Semiconductor device simulations are mostly based on the drift-diffusion 
equations (see [4] and references therein) or, for the most recent ones, on the 
hydrodynamic equations (see [IS]). The drift-diffusion model is not suitable for 
the simulation of fast, submicron structures, because it does not take into account 
the gradients of the carrier temperature. The hydrodynamic model does, but, on the 
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other hand, it uses some parameters (such as relaxation times for momentum or 
energy) which depend on the distribution function and which cannot be easily 
evaluated. Thus, it seems important to develop numerical codes based on the semi- 
conductor Boltzmann equation, to overcome the difficulties encountered by the 
drift-diffusion and hydrodynamic models. 

In particular situations, the semiconductor Boltzmann equation can be solved by 
analytical methods [6]. But, in most cases, a numerical solution is needed. The 
most widely used numerical method is certainly the Monte-Carlo method (cf. [7] 
and references therein), although other methods have been tried in particular 
geometries (cf. Rees’ method [8]) or for particular collision operators (see the 
recent methods developped by Baranger [9] or Kuivalainen and Lindberg [lo]). 
This paper is concerned with the analysis of new methods and algorithms which are 
somehow derived from the Monte-Carlo method, but which are expected to be an 
interesting alternative, as far as views of the distribution function and simulations 
of the transient regimes are concerned. 

The weighted particle method was first introduced by G. H. Cottet, S. Mas- 
Gallic, and P. A. Raviart [ 11, 121, for viscous perturbations of the incompressible 
Euler equation. Then, the method was adapted to the treatment of collision terms 
in kinetic equations [ 11. Its first application to the semiconductor Boltzmann 
equation has been done in [2], and an error analysis, relevant to this particular 
physical context, has been performed in [ 133. Some physical applications can be 
found in [3]. In this method, the particles move along the characteristics of the 
convective (first-order differential) part of the equation, while the collision term 
varies the weights of the particles. The collision integral is evaluated by a discrete 
quadrature, where the particles play the role of the quadrature points. 

In this paper, we try to optimize the coupling of the Poisson equation with the 
motion of the particles, in the presence of the sharp discontinuities of the ion 
background density which are typical of semiconductor device simulations. For that 
purpose, we have investigated three methods. The first one is the very classical 
“particle in cell” (PIC method [ 14, 151. The second one is a modified PIC method 
where the grid density is computed by a quadrature of the distribution function, 
which itself is recovered from the particle distribution by interpolation. This method 
will be referred to as the “interpolation method.” The last one uses an exact 
computation of the mutual Coulomb interaction between pairs of particles by 
means of the Green’s function of Poisson’s equation. These methods are detailed in 
Sections 3 and 4, after a brief description of the Boltzmann equation in Section 2. 

Two test problems are considered in this paper. The first one deals with collision 
damped plasma oscillations and is intended to check the ability of the method to 
reproduce the high frequency behaviour of the semiconductor. The dispersion 
relation of plasma waves in presence of a relaxation time collision term is shortly 
derived and analyzed in Section 5. In Section 6, the corresponding numerical results 
are given. The comparisons show a very good agreement between the numerical 
and the analytical oscillation frequencies and damping rates, when the interpolation 
method is used. In the same situation, the PIC method develops mesh instabilities, 
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which are generated by the charge assignment procedure. We also investigate the 
influence of some numerical parameters. 

The second test problem is a model for a real one-dimensional N’-N--N + 
structure, with a very sharp discontinuity of the doping density (N- = 2.1015 cm -3, 
while N+ = 10” cmp3). In this case, the Green’s function method appears to be 
better than the two other methods. It allows the use of fewer particles and provides 
a good description of the lowly doped region, which is the physically interesting 
region. The numerical results which support these conclusions are detailed in 
Section 7. 

2. THE ONE-DIMENSIONAL SEMICONDUCTOR BOLTZMANN EQUATION 

We refer to [7] and references therein, for a detailed presentation of the physical 
aspects of the semiconductor Boltzmann equation. Our one-dimensional model for 
the semiconductor Boltzmann equation is written 

where j‘(x, u, t) denotes the electron distribution function at position XE [0, L], 
velocity o E R, and time I > 0. q denotes the elementary charge, and m, the electron 
effective mass. The electric field E(x, t), the electric potential 4(x, I) and the density 
n(s, t) are related to f by the Poisson equation, 

a’cj q 
- su’=; (n,(s) -n(x, t)) (3) 

n(x, t) = j f(x, 0, t) du, (4) 

where the material permittivity E and the doping density n,(x) are given. This set 
of equations has to be supplemented by an initial condition for (1 ), 

and boundary conditions for ( 1) and (3 ), 

fez 0, I) = goto, f) for 020 

fbc 0, f) = g,(u, I) for u,<O 

w7 t) = AAO; d(L, t) = 4r(f) 

(6) 

(7) 
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with fO, go, g,, do, dL suitably given. Finally, the collision operator is written 

Q(f)@, u, t) = 
s 

(s(x, u’, u) f(x, II’, t) - s(x, ~1, ~1’) ,f(x, u, t)) dv’. 

For our numerical experiments, we have taken a relaxation time model, 

s(x, u, vy= M(v’), 
t 

(8) 

(9) 

where r is a constant relaxation time and M(o) is the Maxwellian associated with 
the lattice thermal velocity u,,,: 

(10) 

Therefore we neglect both the angular dependence of the scattering rates and the 
discrete character of the energy losses in the phonon interaction. This simplification 
is obviously unrealistic, but on the other hand, it allows analytic computations (see, 
in particular, Section 5), which are very useful to analyse the algorithm. The conclu- 
sion of the present study will be transposed to more realistic collision models in a 
forthcoming paper. 

3. THE NUMERICAL METHOD PRESENTATION 

Our numerical method is based on the weighted particle method (cf. [ 1, 1 l-133 
for other presentations and applications of the weighted particle method). The 
distribution function is approximated by a sum of Delta measures, 

=iC, uifj(t)6(x--ui(t))06(V-uj(f)), (11) 

where <u,(t), vi(r), fi(t), and wi are respectively the position, velocity, weight, and 
control volume of the ith particle. They evolve in time according to 

d-xi 
dt= ui; 

Xi(O) = xp 

Vi(O) = up 

(12a) 

g= Q;(t); .fico,=.f-P (13) 

Ui( t) = up, 
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where Ej( t) and Qj( t) are the approximations of the electric field and of the colli- 
sion operator acting on the ith particle. The initial xp, up, fy, and 07 are chosen 
so that 

fb(X,lJ,~ i wPfPcS(.K-.Yp)6(0-“p). (14) 
i= I 

The approximations ( 11) and ( 14) are taken in the weak topology of measures. The 
time differential system (12), (13) can be solved by any classical scheme. In our 
computations, we used the order-2 Adams-Bashforth scheme. 

To define Qi(r), we introduce a cutoff function i,(x) such that 

i,(x)=[ ; ; 
0 

<(-x) = i(x); s i(x) dY = 1, (15) 

where [ is a compactly supported function. We write (omitting the t-dependence of 
xi and vi): 

= 
s 

[s(xi, u‘, Uj) f(Xi* U’, f)-S(dK;, Uj, fJ’) f(Xj, Vi, f)] dL” 

= 
11 

[s(x’, u’, Vi) f(x’, u’, t) -s(xi, ui, u’) f(Xi, uj, t)] 6(x’- Xi) d.Y’ du’ 

2: 
ss 

[s(x’, u’, u;)f(x’, u’, I)-s(x,, u,, u’)f(xi, vi, t)] <Jx’-.x,)dx’dt+ 

= f CS(*Yj, u.j, u;)f;W- (- s y,? uj7 t’j)fj(f)] (z(x,--Yj) Oj. 
j= I 

Therefore we let 

(16) 

Q;(f) = f [s(x,, uj, Vi) f,(t) - s(x,, ui, Uj) A(t)] [,(.Kj- XJ uj (17) 
j= 1 

In our computations, we use the “hat function” W, (see definition at (19)) as cutoff 
function l. 

The method (17) for the computation of the collision operator has first been 
proposed by S. Mas-Gallic [ 11. She proved an error estimate for the field free 
(E = 0) Boltzmann equation, showing that 

(18) 

The first error term comes from the replacement of the delta measure by [, in (16), 
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and m is related to some moment properties of [. The second term comes from the 
discrete quadrature (h is the mean interparticle distance and k is related to the 
smoothness of the cutoff and of the data). From (18), there is an optimal a, which 
minimizes the total error. 

4. THE POISSON SOLVER 

For the approximation of Ei(t), we considered three methods: first, the classical 
“particle in cell” (PJC) method [ 14, 151; second, a new method, which relies on the 
interpolation of the distribution function; and third, the direct computation of the 
mutual Coulomb interaction between pairs of particles, using the Green’s function 
of the Poisson’s equation. 

In the PIC method, one considers fixed equally spaced mesh points X, = m Ax, 
m = 0, . . . . M, , and an interpolation function W(X). The approximation of the 
density n(.u, t) can be defined at the mesh points n,,, by using the charge assignment 
procedure : 

Then, one solves Poisson’s equation by finite differences on the grid X, (where 4, 
and E, denote approximations of 4(X,) and E(X,)): 

4 ,rr+~-24,,+4,,-,= -$ (n,(Xm)-n,(t)) 

Em= -(4,+,-4,-,)/2d.u. 

Then, the electric field is interpolated at the location of the ith particle: 

Ei(t)= ‘z E W ,~=0 m 

Generally, B-splines are used for the interpolation function W, 

w= wp=p, (19) 

where x is the characteristic function of [ - $, i]. In our computations, we used the 
“hat-function” W,. The PIC method has been widely used and many useful and 
interesting considerations are developed in [ 14161. The reader will also find an 
extended bibliography in these references. The error analysis has been performed in 
[ 171; the error is similar to ( 18) with c1 replaced by Ax, and [ by W. 

To define the interpolation method, we introduce a 2-dimensional mesh 
(X,,, = m Ax, V, = p Au) with m = 0, . . . . M., and p = -M,, . . . . 0, . . . . M,, and a 
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2-dimensional interpolation function IV(.u, L?). A grid approximation fn,,p of the 
distribution function is defined by: 

,f,,,=( i ~(.ri-X,,L'j-v~)l;w,)~(; w(si-x,,,.c,-v,,)w,). (20) 
,=I 1 j=l 

Since the volumes oj are independent of j, they cancel in formula (20). However, 
the denominator of (20) can be interpreted as the “local volume” of the jth particle. 
In this sense, this method is a close relative of Brackbill and Ruppel’s method [ 181, 
which uses a similar “local volume” evaluation. Then, the grid density is recovered 
by the numerical integration of f,Fl.p on the 11 mesh: 

So far, the method is not conservative. We force the conservativity by letting 

and taking ni, as the grid density. The method proceeds exactly as in the PIC 
method. In our computations, we have taken W(x, t’) = W?(x) W,(o). As far as we 
know, the interpolation method (20) is new, and no error analysis has yet been 
performed. However, an error estimate similar to (18) should be expected. 

The Green’s function method relies on an exact representation of the mutual 
Coulomb interaction between particles. In this one-dimensional problem, this is 
particularly simple: first, the electric field generated by a one-dimensional particle 
(physically a charged plane) is a bounded function; second, a very simple “fast” 
algorithm is obtained once the particles are ordered by increasing positions. From 
a direct integration of (11) with respect to u, we get a particle representation of the 
charge density according to: 

P(.C t) = P&, f) = 4 
[ 

nD(-x) - i wif,b(x-xj(r)) . 
/= I I 

We denote by Q and U(t) the following quantities: 

Q=f ph(x, l)d,x=q[j n,(x)d.x- $ -,/,(r)] 
j=l 

U(f) = dL(f) - h(f). 

(21) 

From (21), we have the exact representation of the electric field by 

Eh(x, t)=f \ K(x,y)n,O,)dy- f 
[ j= 1 

wjJ;(r) K(x~ -u,tr)) +x c- U(t) ] 1 [Qx j, (22) 
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where K(x, y) is given by 

K(x, y) = -g (x, y) 

and G(x, y) is the Green’s function of the Poisson equation with periodic boundary 
conditions: 

- & G(x, y)=S(x-y)-;; G(0, y) = G(L, y) = 0. 

K has a jump at x = ~1 of magnitude 1 and, from symmetry considerations, we can 
let K( y, .v) = 0. Thus the electric field Ei(t) acting on particle i is given by 

1 K(xJt), y)nJy)dy- : uJfi(r) K(Xi(f)v X,(t)) 
J=I 1 

(23) 

The second bracket and the convolution term are easy to compute. The most costly 
part of this method is the computation of the summation term. 

In the collisionless case, the convergence of this method has been proven by 
Trocheris [ 193 in the topology of bounded measures provided with a “discrepancy” 
metric. Better convergence results in stronger topologies are available (Cottet and 
Raviart [20]) by use of a regularization procedure; we introduce a cutoff function 
i,(x) which satisfies the properties (15) (but the smoothing parameter u may be 
different for the collision term and for the electric field). We let 

Kak Y) = (KC.7 ~1.: i,)(x), (24) 

where in (24), the periodic extension of K for x outside the interval [0, L] is 
considered, so that K" is again periodic with period L. Now the smoothed electric 
field reads 

j K(xi(t), y)n,(y)dy- i ~/f;(t) K"(*yi(f), pi) 
,=I 1 

The Green’s function method has not yet been widely used in practice, at least 
in semiconductor or plasma physics, because its computational cost -grows quad- 
ratically with the number of particles. However, recently, Greengard and Rokhlin 
[21] have derived a fast algorithm with a linear complexity. Their algorithm solves 
the 2-dimensional periodic problem, by use of a multipole expansion. In one dimen- 
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sion, a more costly, but easier to implement algorithm can be obtained by use of 
a fast sorting algorithm. The problem is the evaluation of the term 

F, (t) = c qf,O) Wi(f), -u,(t)). 
,=I 

We suppose that the particles have been indexed by increasing positions and that 
there are no pairs of particles with the same position (this latter situation is 
exceptional and arises with probability zero). Thus, we suppose 

i < j * xi < xj. 

From the exact expression of K, we obtain 

F;(r) = Si(r) + T,(t) 

S,(r)= c w-f.(t) ;<, , , (y+i); r,(t)=;, mjJ(r,(y-;). 

We have the recursion formulae. 

with 

k=l k=i 

The computation of A,, Bi, Sj, and Ti can be performed in order N operations. 
When the regularization procedure is used, we consider the electric field as as 
perturbation of the unsmoothed one. Since the cutoff function is compactly 
supported (again, we choose a B-spline IV, or IV,), the perturbing electric 
field acting on a pair of particles of positions xi and xi is vanishing as soon as 
Ixj - xi1 2 Aa, where A is such that Supp c c [ -A, A]. A preselection of such pairs 
of interacting particles is performed by localizing the particles with respect to a 
fixed mesh of mesh spacing A. This allows the computation of the perturbing 
electric field in order NM operations, where M is the mean number of particles per 
cell. The same algorithm is used to compute the collision operator (17). This is a 
rather classical procedure [ 141. 
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5. PLASMA OSCILLATIONS; ANALYSIS 

The simulation of plasma oscillations is one of the most fundamental test 
problems for particle methods and has received a great deal of attention from 
plasma physicists, in the case of collisionless models [ 14163. In this paragraph, we 
analyse the dispersion relation of plasma waves, in presence of a relaxation time 
collision term (8), (9). 

The dispersion relation of plasma waves is found by linearizing the Poisson- 
Boltzmann equation about a state of equilibrium with vanishing electric field [22] 

f&-, u)=ng M(u) with n, independent of X. 

de&-) = 0; E,,(x) = 0. 

The linearized equation is then solved by looking for plane wave solutions. Their 
frequency w and their wave-vector k are related by the plasma dispersion relation, 

D(k, w; T) = 0, 

with 

(26) 

Here, T denotes the relaxation time (9) used in the collision operator (8); 
0; = q2n,/un is the plasma frequency and z is a complex phase velocity: 

In the limit T + co, we recover the classical plasma dispersion relation 
expanding the Cauchy integrals in powers of uth/zr and neglecting the 
order (~,Jz)~, we obtain 

D(k,o;r)-l-rk; -;-,(y)-& ($0, 

WI. BY 
terms of 

(27) 

where AD = ut,,/wp is the Debye length. The dispersion relation (27) is that of the 
classical damped oscillator. It thus exhibits two regimes with a threshold for 
2CO,T= 1: 

First regime. Damped oscillations for 20,~ >, 1, with (complex) frequency: 

w=o,J * (l-&y’&] t-28) 



BOLTZMANN EQUATION FOR SEMICONDUCTORS 

Second regime. Exponential decay for 2~0,s < 1 at rates: 

w += -; [l&(1 -(2c+J)‘)‘*]. 

75 

(29) 

On Fig. 1, we plot the variations of Q,= IRe WI and wi= Im o (for the first 
regime) and Q + and oP (for the second regime) as a function of op. We have 
supposed that r is constant, and r ~’ is chosen as a frequency unit. Indeed, in 
semiconductor physics, r is almost constant (and related to the low field mobility 
/r by r = qp ‘mp), whereas w, depends monotonously on the doping density n,. 
Thus, varying wP is like varying the doping density, but in a normalized way so 
that the conclusions of the analysis are independent of the material parameters. For 
comparison, we also plot the dielectric frequency o,~ = wir, found by linearization 
of the drift-diffusion model. 

In the first regime (damped oscillations), the actual oscillation frequency o, is 
asymptotically (and very rapidly) equal to the plasma frequency wP as cop5 

increases. They differ in the range f 6 W,,T 6 1, and o,, quickly goes to 0 as WIT 

tends to the threshold value $. The damping rate remains constant, and, outside the 
range i-< O,,T 6 1, is more than one order of magnitude smaller than the oscillation 
frequency. Furthermore, the dielectric frequency od strongly overestimates both 
time scales. The drift-diffusion model predicts a very sharp exponential decay where 
the actual behaviour is that of weakly damped high frequency oscillations. 

7 .-‘- 
: Exponential decay 
4 
4 0.0 
: 

Decay rate. mode + 

; 
o- 

h 

2 
-0.5 - scillarion frequency 

F 

z -l.O- 

L 
z 
f 
: 

0 
Damped oscillations 

-1.25 -1 .oo -0.75 -0,50 -0.25 0.00 0.25 0.50 0.75 

FIG. 1. Plots of w, = IRe WI (oscillation frequency), w, = Im tr) (damping rate) in the case 1 (damped 
oscillations); of w, (decay rate, mode +) and o- (decay rate, mode -) in the case 2 (exponential 
decay); and of o8 (plasma frequency) and o,, (dielectric frequency) in log units, as a function of o,,; the 
frequency unit is 7 ‘. 
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TABLE I 

Values of the Densities (in cm-j) Corresponding to the Left and 
Right Bounds of the Transition Region and to the Threshold 

(20,~ = 1). for Three Materials 

Left bound 
of TR Threshold 

Right bound 
of TR 

Si 
Ga As 
In As 

1.0 x 10” 1.4 x lOI 6.0 x lo’5 
4.7 x lOi 7.0 x 10”’ 2.7 x 101s 
1.0 x IO’” 1.4 x lOI 5.8 x 10’” 

Nov. The physical constants are taken from [23]. 

In the second regime (exponential decay), the dominant mode is o- , since its 
decay rate is much smaller than 0,. It is very quickly asymptotically equal to the 
dielectric frequency od as ~,t tends to 0, which proves the validity of the drift- 
diffusion mode1 in this regime. Outside the region 0.3 d wPr < i, the two damping 
rates w, and oP have significantly different orders of magnitude. Inside this 
region, w- differs from od, and both w + and w ~ tend to (2r) -’ as 0~5 tends to 4. 

From this analysis, we may define the “transition region” between the two 
regimes by 0.3 6 oPr f 1. Outside this transition region, two very different time 
scales (o + and o ~ on the one hand, o, and oi’on the other hand) are present and 
lead to a stiff numerical problem. Values of the densities corresponding to the 
transition region for three semiconductor materials (Si, Ga As, In As) are given in 
Table I. These densities are quite low, and the range of the transition region is very 
narrow. Thus, in most situations, the electron gas is in a damped oscillation regime, 
and the validity of the drift-diffusion model (even for silicon) is highly questionable, 
at least for transient simulations. Table I also shows that the plasma frequency of 
the most highly doped region is the limiting time scale for many semiconductor 
simulations. Let us remark that a fluid mode1 (in which the time derivatives of the 
momentum are not neglected) would have provided the same conclusions as the 
kinetic model, so far 

Finally, this analysis does not account for the acoustic propagation of plasma 
waves, which can be found by expanding (27) to higher order terms. Also, the 
expansion (27) is not uniformly valid as r -+ lyj. Indeed, when r = ‘x, the residuals 
of the Cauchy integrals have to be added, which leads to Landau damping [22]. 

6. PLASMA OSCILLATIONS: SIMULATIONS 

For simulating plasma oscillations, periodic boundary conditions for f, 4, and E 
have been prescribed. The length L has been adjusted to be equal to one 
wavelength, so that k = 2x, and by the choice of suitable units, we let 

cl+ 1; no= 1; L= 1. 
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The only “free parameters” left in the problem are wPr, kA, = 27cu,,,, and the 
magnitude x of the initial perturbation, such that the initial data are given by 

j&x, u) = M( u)( 1 + x sin(2n.u)); Odx< 1. (30) 

The object of the discussion is twofold. First, illustrate the considerations of the 
previous section and second, identify the effect of the numerical parameters on the 
accuracy of the computation. 

On Figs. 2a and b, we plot the potential energy as a function of the time, for 

0 5 10 

Time 

FIG. 2. Potential energy versus time for six values of O,,T (denoted on the Figure by fp), for the same 
values of kL, = 0.1 and I= 0.05. 
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TABLE II 

Comparison between the Predicted and the Observed Half Period of 
the Oscillations for the Runs Displayed on Fig. 2a 

up r T/2 (observed) T/2 (predicted) 
Relative 

error (“0 ) 

10 3.13 3.146 0.5 
2.506 3.2 3.206 0.2 
0.997 3.65 3.631 0.5 

several values of oP’s. In these simulations, the interpolation method has been used 
for the computation of the electric field. As wPr decreases from 10 (log,,(o,r) = 1.) 
to 2.506 (log,,(w,r) = 0.4) then to 0.997 (log,,(o,r) = O.), the oscillations are more 
strongly damped and their frequency slightly decreases, according to the prediction 
(28). In Table II we give the comparisons between the theoretical half period 
T/2 = n/o, (from formula (28)) and the observed one (from Fig. 2). We do a similar 
comparison in Table III for the decrement per period, 6 = exp -oi T. The agreement 
is totally satisfactory. 

For up5 =0.63 (log,,(w,r) = -0.2) we are still in the oscillatory regime but 
just above the threshold with the exponential decay regime, and thus the second 
bounce of the oscillations is no more perceivable. Then, for wPr = 0.397 
(log,,,(o,r) = -0.4) and mpt =O.25 (log,,-,(o,r) = -0.6), we step in the exponential 
decay zone. In that case, the perturbation of the density is a combination of the two 
eigenmodes n + e -“‘+ ’ and FI _ e --(‘- ‘. The initial amplitudes n + and n ~ can be 
deduced from the continuity equation, and from the fact that f0 has mean velocity 
zero (see (30)). They are connected by n + /n = o _./o + . Then, the potential energy 
is given in suitable units by 

Since n + /n ~ is small the first term rapidly becomes dominant and the decay rate 
w- can be measured from the numerical simulation. In Table IV we display 

TABLE III 

Comparison between the Predicted and the Observed Decrement per 
Period of the Oscillations for the Runs Displayed on Fig. 2a 

wpr 6 (observed) 

10 0.71 
2.506 0.26 
0.997 0.023 

6 (predicted) 

0.730 
0.278 
0.0262 

Relative 
error (% ) 

2.7 
6.5 

12.2 
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TABLE IV 

Comparisons between the Predicted and the Observed Decay Rates 
for the Runs Displayed on Fig. 2b 

wp5 w+ 

0.397 2.03 
0.25 3.73 

w- n+/ ‘n 

0.494 0.24 
0.268 0.071 

Measured 
W- 

0.49 
0.24 

Error on 
wm (%) 

_- 

0.8 
10.4 

predicted values of o, , o-, and n, /n- according to formula (29 j and the 
measured values of o _ from Fig. 2b. The agreement is again very satisfactory. 

Figure 3 is intended to illustrate the competition between Landau damping and 
collisional damping. The higher value of k&, leads to a Landau damping constant 
tiptL ‘v 20 (see the formula for Landau damping in [22, p. 385]), whereas the colli- 
sional damping constant is wpr = 50. The non-monotonous decay of the amplitude 
of the oscillation, as appearing on Fig. 3, is typical of nonlinear Landau damping 
[22, Section 10.71. It originates in the trapped particles, moving at the same 
velocity as the wave phase velocity, which oscillate in the sinusoidal potential well, 
at the so-called bounce frequency oB. wB can be evaluated by approximating the 
sinusoidal well by a harmonic well, which gives (in our units): 

COB 1: 45 op. (31) 

As x goes from 0.05 (Fig. 3.b) to 0.2 (Fig. 3a) the corresponding bounce frequency 
as measured on the figure, is multiplied by a factor 2.5, which satisfactorily agrees 
with (31). On the other hand, the measured absolute magnitude of the bounce 
period significantly differs from (31), but this is due to the harmonic approxima- 
tion. After a few tens of plasma periods, the collisional damping takes over and the 
amplitude of the oscillations then decays monotonously. 

We now comment on some comparisons between the PIC method and the inter- 
polation method. In Fig. 4, we show the results of both methods on the same 
simulation cases, the data of which are summarized on Table V; (we recall that we 
denote by N the number of particles, and by ds, Au, the size of the cells in .X and 
in 0). 

TABLE V 

Simulation Parameters for Fig. 4 

x8 (Fig. 4a); 

WPT 10 (Fig. 4b) IV 2ooo 

Id, 0.314 ds.il, 0.8 

dC!l’,, 
x 0.05 (interpolation) 0.4 

581 90,l.6 
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P 
0 Bounce period = 16.42 
Z 
5 
Y 
2 0.0001 
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Time 

le.5 

Bounce period = 40 

Oe+O 
0 20 40 60 80 100 

Time 

FIG. 3. Potential energy vs time for two values of ;x. x = 0.2 (Fig. 3a); x = 0.05 (Fig. 3b) for kl, = 0.3 
(i.e., (C)p~L = 20) and 0~5 = 50. 

The PIC method develops an instability after six plasma periods, whereas the 
interpolation method remains stable. We noticed that the development of the 
instability is delayed and its magnitude is decreased when the ratio N/M., is 
increased. On the other hand, the magnitude of the instability is much higher in the 
collisional case (Fig. 4b) than in the collisionless case (Fig. 4a), which is surprising 
since the collision term should (at least partially) dissipate the energy of the 
instability. This instability is associated with mesh oscillations, which appear when 
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bunches of particles oscillate from one cell to the next. They are generated by the 
random fluctuations of the mesh-defined density, due to the charge assignment and 
field interpolation procedure. In the collisional case, once the physical oscillation is 
damped, the random fluctuations remain the only perturbation of the equilibrium, 
and mesh oscillations can develop freely. In the collisionless case, however, the 
physical plasma oscillations have constant energy and can interfere with the mesh 
oscillations, which may decrease the amplitude of the instability. Similarly, when 
the ratio N/M, is increased, the fluctuations are decreased, and mesh oscillations 
cannot develop so easily. The interpolation method remains stable because the 
charge assignment procedure is less noisy than in the PIC method and does not 
allow the development of mesh oscillations. 

Figure 4c shows comparisons of the mesh-defined density at time 45, for the PIC 
method and for the interpolation method. For reference, the amplitude of the initial 
perturbation is also shown. The mesh oscillations generated by the PIC method are 
clearly visible. The interpolation method is still noisy, but the amplitude of the 
fluctuations is smaller by a factor of 10. 

We now examine the influence of the numerical parameters. Since this analysis is 
well known for the PIC method [14-161, we restrict our discussion to the inter- 
polation method and to the evaluation of the collision operator. The effect of a 
variation of the smoothing length cx for the discrete collision operator (17) is 
illustrated on Fig. 5. The parameters relative to the reference simulation are 
summarized on Table VI. Figure 5 shows that decreasing the average number of 
particles per smoothing length leads to underestimate the damping rate. However, 
it does not lead to a strong instability, as could be expected. On the other hand, 
the oscillation frequency remains unchanged, which shows that there is no inter- 
action between the discretization of the electric field and of the collision operator. 
The influence of At can be seen on Fig. 6. A value of op At above 0.2 leads to a 
significant increase in the damping rate and a slight decrease in the frequency. 

It should be stressed that CI may be much smaller than d-u: in the reference case 
shown in Table VI we have a/Ax z 0.05. On the other hand, if dx is decreased, 
mesh instabilities develop more easily (especially in the PIC method) because the 
number of particles per cell is too small. This shows that the collision solver (17) 
needs a much smaller “amount of smoothing,” and thus is more “robust” than the 

TABLE VI 

Reference Simulation for Comparisons Displayed on Figs. 5 and 6 

WPT 10. N zoo0 

k/l, 0.1 Ax/~, 2.53 

x 0.05 AL’/Ulh 0.41 

wp At 0.1 ai& 0.127 
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FIG. 4. Comparison between the PIC method and the interpolation method (18) in a collisonless 
case (a) and in a collisional case (OPT = 10, Fig. 4b). The potential energy is plotted as a function of 
time. The plot corresponding to the interpolation method is first identical with that of the PIC method 
up to time 20, and then, nearly zero afterwards. (c) Snapshot of the electron density n as a function of 
the position x for t = 45, with the PIC method and the interpolation method. The initial density (r = 0) 
is plotted for reference. 
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I I I I 

0.2 0,4 On6 
Position 
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Figure 4-Continued 

Oe+O 
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Time 

FIG. 5. Potential energy versus time for three values of the ratio ail, (denoted by sl on the ligures j. 
The average number of particles per smoothing length is respectively 8 (for sl = 0.127), 4 (for sl = 0.063). 
and 2 (for sl = 0.031). 
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(reference simulati 

0 1 2 3 4 5 

Time 

FIG. 6. Potential energy versus time for three values of the product op At (denoted by dt on the 
figure). 

PIC or interpolation solver. Therefore, any effort to improve the overall method 
should be directed towards the Poisson solver rather than towards the collision 
solver. This will even be more apparent in the context of the next example and will 
motivate the investigation of the Green’s function Poisson solver. 

7. AN Nf-N--N+ STRUCTURE 

This section deals with a test problem presented in [9] for which the doping 
profile is given by 

n,(x)= n, 

i 

n,+ for O<x<?c, 
for x,<x<?c, 

n; for x2<xGL 

with rig/n; large. The typical value of this ratio in most numerical simulations is 
500 [9,24] or around (1000 in [25], 100 in [26], . ..). As classical in semiconductor 
physics the behaviour of the device is dominated by the dynamics of the carriers in 
the N- region [23] and the numerical methods should give a precise description 
of this region. This is a difficult problem because the numerical errors on the 
electron density in the N+ regions reach the same orders of magnitude as the 
density itself in the N- region, which strongly perturbs the overall potential. 
Another numerical problem is related to the very peaked profile of the electric field. 
If the trajectories solver is not accurate enough, a fast particle is very likely to jump 
over the peak of the electric field. 
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In Monte-Carlo methods, these problems are all the more difficult to solve that 
the particles have equal weights. Thus, the number of particles per unit length is in 
the same ratio as the doping densities. This “undersampling” of the N- region 
needs to be balanced by averages over very long time intervals which do not allow 
a correct description of the transient regimes. In the weighted particle method 
however, the differences in the doping densities are absorbed in the differences of 
the weights, and the number of particles per unit length can be the same in both 
regions. By use of the Green’s function solver, we can obtain a quite nice picture 
of the instantaneous electric field in the N- region, for a very moderate number of 
particles. 

The physical parameters are chosen according to Table VII. The lengths of the 
N+ regions have been chosen smaller than in [9]. The thermal velocity 
corresponds to a 300 K temperature and 0.069 relative effective mass. The Debye 
length and the plasma frequency in the N+ region are: A, = 4.24 x 10 -’ pm and 
w =608 10’2s-‘. P * 

The distribution function is initialized by the equilibrium distribution function: 

where 4 satisfies the semilinear elliptic equation: 

a2(i5 44,~) 
ay,-n,(.x)-exp T . 

( ) m~;h ’ 
4(O) = $4 L) = 0. 

(32) 

(33) 

Equation (33) is solved by finite differences and Newton’s method. For all the 
simulations displayed in this section, we used periodic boundary conditions. Other 
boundary conditions were tested, but were found unstable. 

The first series of tests are performed with a zero applied voltage and concern 
comparisons between the PIC method and the Green’s function method, and 
between the regularized and unregularized Green’s function method. For a zero 
applied voltage, the solution is stationary, equal to the equilibrium solution (32), 
and thus provides an easy bench mark. In this very inhomogeneous case, the inter- 
polation method provided extremely bad results which we do not present here. 
Figure 7 shows comparisons between the unregularized Green’s function method, 

TABLE VII 

Physical Parameters for Simulations Displayed in Section 7 

n+ = 10’8cm-3 
.I’, = 0.4 pm 
L= 1.2pm 

c,,, = 258,000 mjs 

n- =2.10’5cm-3 D 
Y, = 0.8 pm 

r = 0.29 ps 
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FIG. 7a. Electric field (in kV/cm) as a function of distance (in pm) at time t= 1 ps (corresponding 
to 100 time steps). Left ligures: PIC method; right figures: Green’s function method. Top figures: 3000 
particles; middle: 9000 particles: bottom: 21,000 particles. The exact solution is shown in dashed lines. 
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FIG. 7b. Potential (in V) as a function of distance (in pm) at time t = 1 ps. Left figures: PIC method; 
right figures: Green’s function method. Top figures: 3000 particles; middle: !XMM particles; bottom: 
21,000 particles. The exact solution is shown in dashed lines. 
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and the PIC method, for three values of the number of particles. The numerical 
values for these simulations are given in Table VIII. 

Figure 7a represents the electric field as a function of the distance in the device 
after a 1 ps simulation. For the Green’s function method, we represent the “particle 
electric field” (23), whereas for the PIC method, we represent the grid electric field 
E, (see Section 4). The Green’s function method appears to be quite precise inside 
the lowly doped region, even with the lowest number of particles, and gives a good 
description of the sharply peaked electric field. By contrast, the fluctuations are 
large in the highly doped region. These fluctuations are generated by the random- 
ness of the positions of the particles in the phase space, which appears clearly on 
Fig. 8. Indeed, although the particles are initialized on a regular mesh, the flow is 
turbulent enough to randomize them after 1 ps. Therefore, the summation term in 
(23), which is the numerical quadrature of the integral of the electron density 
against the kernel K, is very near to a Monte-Carlo quadrature. The Monte-Carlo 
fluctuations are only apparant in the N+ region because their amplitude is scaled 
by the doping densities. From Fig. 7a, we notice that this amplitude is decreased by 
a factor 2.5 when the number of particles is multiplied by a factor 7, which is 
consistent with the N--“” rate of convergence of Monte-Carlo quadratures. The 
PIC method gives an oscillatory electric field. The oscillations are coherent, with a 
mesh wavelength: as the mesh size is decreased, the wavelength of the oscillations 
are decreased and their amplitude is increased. Furthermore, the peak of the electric 
field is smeared: the peak value is almost half of the exact one. 

In our opinion, the fluctuations generated by the Green’s function method do not 
affect much the dynamics of the particles. Indeed, these fluctuations are completely 
random, with a very short wavelength. Their influence along the trajectories of the 
particles has mean value zero. As pointed in [ 14, IS], it may happen that these 
fluctuations behave like an additional Fokker-Planck collision term in the equa- 
tion. We believe that this effect is of little importance here and contrary to [ 14, 151, 
that it is not greatly reduced by smoothing (see the next comparisons). In the PIC 
method, the coherence of the oscillations react on the dynamics of the particles by 
creating bunches of particles which oscillate from one cell to the next ones and 
generates mesh oscillations. 

Figure 7b displays the potential at time 1 ps. On the left, we represent the grid 

TABLE VIII 

Numerical Parameters for Fig. 7 

N (particles) 3000 9000 21,000 

dx (PIC method; in pm) 
Number of part&e11 (PIC) 
a (collisions, in pm) 
Numb. of part./cutolT (~011.) 
Time step (in fs) 

8x to-’ 8 x lo-’ 6x 10-l 
20 60 105 

8 x 10m4 2.66 x 1O-4 1.2 x 1om4 
4 4 4.2 
10 10 10 
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FIG. 8. Plots of the position of the particles in the phase space at time 1 ps; horizontal axis: distance 
in pm; vertical axis: velocity ( x IO6 m/s). Zero applied voltage, Green’s function method for the field; 
9000 particles. 

potential 4, computed by the PIC method, and on the right, the potential given 
from the Green’s function method by a numerical integration of the particle electric 
field Ei. With the Green’s function method, the relative error on the barrier height 
is about 10 %, independently of the number of particles. This feature can be 
explained by two factors. First, the fluctuations of the potential in the N+ region 
give rise to some “uncertainty” on the barrier height. Second, the numerical electric 
field is not as sharply peaked as the exact one. Since, the barrier height is exactly 
the area of the peak, it should be decreased proportionally. However, since in this 
method, the potential is independent of the trajectories solver, it is not clear if the 
discrepancy between the numerical and the exact potential really affects the motion 
of the particles. 

The potentials given by the PIC method present similar oscillations as the electric 
field. Furthermore, with too few particles (3000 or 9000), a spurious potential 
barrier lies at the boundaries, which gives rise to large errors in the barrier height. 
However, with 21,000 particles, the PIC potential is approximately as good as the 
Green’s function potential with 9000 particles, except that the barrier height is more 
accurate with the PIC method. When the mesh size of the PIC method is decreased, 
the overall shape of the potential improves, but at the expense of an increase of the 
fluctuation amplitude. This seems to indicate that better results would be obtained 
with two meshes: a coarser one for the charge assignment procedure and a liner one 
for the resolution of the Poisson equation. However, this procedure would lead to 
an increase of the numerical cost. 
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TABLE IX 

CPU Time per Particle and per Time Step on Apollo DN-3000 (in 
ms) 

N (particles) 
3ooo 9ooo 21,000 

Method 

PIG 1.89 1.86 1.87 
Green’s function 3.51 3.44 3.54 

Comparisons of the CPU times per time step and per particle are given in 
Table IX. The Green’s function method is twice as costly. For a given quality to be 
reached, the Green’s function method needs approximately half the number of 
particles, but the overall computer time is the same. However, in real cases, the 
complexity of the collision operator is much greater, and the collision solver 
becomes the most time consuming step of the code. Since its complexity grows at 
least linearly with the number of particles, it may be interesting to choose a Poisson 
solver which allows the use of fewer particles for the same quality of results. Thus, 
we recommend the use of the Green’s function Poisson solver. 

We now turn to the comparisons of the unregularized and the regularized 
Green’s function methods. Two examples of cutoff functions [ are tested: the 
B-spline W, (see definition (19)) which generates a Co kernel K”, and the B-spline 
W, which generates a C ’ kernel K”. The numerical values of the smoothing 
parameter c1 are given in Table X. The other ones are those indicated in Table VIII. 
c( has been chosen of the same order of magnitude as the mesh size Ax in the PIC 
method 

The resulting electric fields are presented in Fig. 9. We notice a clear reduction 
of the noise amplitude in the N+ region, of approximately a factor 2. The peak of 
the electric field is not smeared, which is surprising and interesting. Furthermore, 
the accuracy in the N- zone is clearly improved, especially when fewer particles are 
used. Thus, the results are clearly improved by the smoothing procedure. On the 
other hand, the smoothness of the cutoff function is unimportant: the results are as 
good with W, as with W,. The real drawback of the smoothing procedure is its 
cost. Table XI gives the CPU time per particle and per time step. The increase of 

TABLE X 

Smoothing Parameters a for the Simulations Displayed on Fig. 9 
Using the Regularized Green’s Function Method 

N (particles) 3ocQ 9ooo 

a (regularization parameter inpm) 
Number partjcutoff 

3.10-3 3.10-’ 
15 45 
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FIG. 9. Electric Iield (in kV/cm) as a function of distance (in pm) at time t = 1 ps. Left figures: 3000 
particies; right figures: 9000 particles. Top figures: unregularized Green’s function; middle: regularized 
Green’s function, i = W,; bottom: regularized Green’s function, [ = W,. The exact solution is shown in 
dashed lines. 



92 DEGOND AND GUYOT-DELAURENS 

TABLE XI 

CPU Time per Particle and per Time Step on Apollo DN-3000 (in 
ms) for the Regularized Green’s Function Method 

N (particles) 3ooo 9ooo 

Unregularized 3.51 3.44 
Regularized; cutoff = IV, 7.28 13.54 
Regularized; cutoff = Wz 7.38 13.84 

the CPU time due to the smoothing procedure depends on the number of particles 
per smoothing length, as a consequence of the localization procedure that is used 
to perform the regularization (see Section 4). The derivation of a “fast algorithm” 
for the regularized electric field (at least for simple cutoff functions like W,) would 
greatly improve the method. This has not yet been performed. 

A second series of tests are concerned with an applied bias u(t) = #L(t) - 4,,(t) = 
0.47 V, which corresponds to one of Baranger’s simulations [IS]. The initial datum 
is the equilibrium distribution function under zero applied voltage, given by 
(32)-(33). Thus, the simulation mimics the transient evolution of the structure 
under a sudden change of the applied bias at t = 0. The transient regime would 
probably be more realistic if this change was not so abrupt. The boundary 
conditions on the distribution function are still chosen periodic. For a long enough 
N+ region, the specific form of the boundary condition is not very important, since 
the particles are thermalized before entering the active N- region. Nevertheless, 
physically more realistic boundary conditions would allow the use of a shorter NC 
region, which would decrease the computer time. We have not found a convenient 
boundary condition for both the physical and numerical viewpoints yet. 

An important diagnostic in semiconductor device simulations is the total current 
density J(x, t) defined by 

J(x, t) = Jpart(x, t) + E g (x, t), 

where Jpart is the “particle current,” 

Jpartb, t) = -4 [ Ax, 0, t) 0 do, 

and E iTE/iTt is the displacement current. In this one-dimensional situation, J does 
not depend on x because it is divergence free. Thus it is equal to its mean value 
over the device: 

J(t)=;IoL J(x,t)dx= -~~~f(x,s,I)udxdu-Ed. 


